

OPERATION MANUAL

2511
EtherCAT Integration into TwinCAT

 Manufacturer:
© 2024 burster

praezisionsmesstechnik gmbh & co kg
burster
präzisionsmesstechnik gmbh & co kg

 All rights reserved Talstr. 1 - 5 P.O. Box 1432
 76593 Gernsbach 76587 Gernsbach
 Germany Germany

Valid from: 01.04.2024 Tel.: +49-7224-645-0
Applies to: 2511-VXXX1 Fax.: +49-7224-645-88
 Email: info@burster.com
 www.burster.com

 4539-BA2511ETHERCATEN-5799-041528

http://www.burster.com/

2 of 23

Table of Contents
Introduction ... 3

1. Creating new project .. 4
2. Installation of ESI description files ... 6
3. Scan EtherCAT devices ... 6
4. Create a sample program .. 9
5. Further Examples ... 17
5.1 Read and Write of ‘real’ data types .. 17
5.2 Read and Write of ‘string’ data types ... 21

 3 of 23

Introduction
This quick start guide describes an approach how you can configure the 2511 via Beckhoff TwinCAT using a
Beckhoff PCI-Ethernet Card. Please note that the samples here cannot be directly used in your production
line because they have beed extremely simplified to reach a better understanding. Therefore, you may have
to complete them by checking of status, error, length values etc.

Please also note that you will have to use the 2511 manual to get futher information about input and
output parameters (cyclic as well acyclic data transfer)

4 of 23

1. Creating new project
 Start the TwinCAT XAE Shell and click on New TwinCAT Project (or via File → New Project) (a)

 Select TwinCAT XAE Project, assign a project a name (b) and click OK

 Go to TwinCAT (a), select Show Real Time Ethernet Compatible Devices…(b) and look for you’re
a EtherCAT Master device under Compatible devices (c). Afterwards click the Install button (d).

a

b

 5 of 23

b

c

a

d

6 of 23

2. Installation of ESI description files
Note: Please make sure that your ESI file is compatible to the field bus firmware in the 2511.

 Copy the ESI file into directory C:\TwinCAT\3.1\Config\Io\OnboardIo
and additionally into C:\TwinCAT\3.1\Config\Io\EtherCAT

 Note: you will find the corresponding ESI files on burster.com

Note: If you use the TwinCAT 2 The ESI directory would be C:\TwinCAT\Io\EtherCAT

3. Scan EtherCAT devices
 Right click I/O → Devices (a) in the project tree und select Scan (b):

 Now, you can select an EtherCAT compatible device in the new window and click OK:

a

b

 7 of 23

 At this point you are ready to connect the 2511 to your EtherCAT master and perform a device
search by confirming the Scan for boxes request or later by right-clicking on the found EtherCAT
device and selecting Scan in the context menu as shown below:

 If asked, confirm to use online description and after a while you should be able to see the 2511

device in the project tree:

 To see the process data, please click on the 2511 EtherCAT in the project tree (a) and select the

Process Data tab (b):

8 of 23

a

b

 9 of 23

4. Create a sample program
In this section, you will learn how to create a simple PLC program to execute a measurement via PDO
(Process Data Object). You will need to refer to 2511 EtherCAT Manual documentation to understand the
meaning of input bytes.

 Right-click PLC in the project tree and select Add New Item...

 Select Standard PLC Project (a) in the Add New Item dialog, enter Example as project name (b)
and click Add

10 of 23

 Next, open the MAIN (PRG) file from PLC → Example Project → POUs with double click on it:

Example 1: Reading and Writing of PDOs

 Type in the following text in the MAIN block

a

b

 11 of 23

 Goto Build → Build Solution

 Assign the input and output variables to the corresponded PDOs with the right-click on a variable
and select Change Link…(a) from the context menu, select a corresponded PDO (b) and click OK
(c):

Assignment:

MAIN.statusByte → READY_STATUS
MAIN.ctrlByteA → CONTROL_A
MAIN.ctrlByteB → CONTROL_B

12 of 23

 Right-click Mappings → Generate Mapping:

a

b

c

 13 of 23

 Goto Build → Build Solution to build the project:

 Activate configuration via TwinCAT → Activate Configuration

 Confirm starting in Run Mode:

14 of 23

 Goto PLC → Login: and if asked, confirm that program should be downloaded into the controller

 Set a breakpoint (F9 or right-click → Toggle Breakpoint) to the first line to control the program
execution step by step:

 Press the F5 key or click on the green start symbol to start the program execution:

 15 of 23

 Execute the program line by line with the key F10 oder via Debug → Step over

 The first bit of the control byte A will be set and a measurement will be started if the first bit of the
status byte (ready bit) is set:

 To start another measurement the “start measurement” bit has to be reset (first line). Otherwise the
“ready bit” will remain false and no measurement will be executed.

 In the project tree select Box_1 (2511 EtherCAT) → Transmit PDO Mapping (a) to control the
results. The CHAN_1_LIVECNT increments with each measurement (b) and the current
measuremet values (c) are shown for each channel

16 of 23

a

b

c

 17 of 23

5. Further Examples

5.1 Read and Write of ‘real’ data types

Example 2: Set and Get the Lower Limit RDC for Channel 1

This example shows you how to write and read the Lower Limit RDC for Channel 1

 Add the Tc2_EtherCAT library to your project to be able to use FB_EcCoESdoRead and
FB_EcCoESdoWrite function blocks via References → Add library

 Add a new POU (Program Organization Unit)

18 of 23

 Rename it to WriteReadLimitRdcLowCh1 and click OK:

 Insert the call of the WriteReadLimitRdcLowCh1 in the MAIN POU:

 19 of 23

 Type in the following code into the created WriteReadLimitRdcLowCh1 POU

Source code:

PROGRAM WriteReadLimitALow
VAR
 fbSdoWrite : FB_EcCoESdoWrite;
 fbSdoRead : FB_EcCoESdoRead;
 sNetId : T_AmsNetId := '169.254.20.111.3.1'; // see note 1 below
 nSlaveAddr : UINT := 1001; // see note 2 below
 nIndex : WORD := 16#2409; // CoE Object - Limit A Lower Value
 nSubIndex : BYTE := 0; // is always 0
 fLimitRdcLowCh1 : REAL := 1.23; // data to be written to 2511
 bExecute : BOOL := TRUE;
 bError : BOOL;
 nErrId : UDINT;
END_VAR

fbSdoWrite(
 sNetId := sNetId,
 nSlaveAddr := nSlaveAddr,
 nIndex := nIndex,
 nSubIndex := nSubIndex,
 pSrcBuf := ADR(fLimitRdcLowCh1),
 cbBufLen := SIZEOF(fLimitRdcLowCh1),
 bExecute := bExecute
);

IF NOT fbSdoWrite.bBusy THEN
 bExecute := FALSE;
 IF NOT bError THEN
 (* write successful *)
 bError := FALSE;
 nErrId := 0;
 ELSE
 (* write failed *)
 bError := fbSdoWrite.bError;
 nErrId := fbSdoWrite.nErrId;
 END_IF

 fbSdoWrite(bExecute := FALSE);
END_IF

fLimitRdcLowCh1 := 0.0;

fbSdoRead(sNetId:= sNetId,nSlaveAddr :=nSlaveAddr, nIndex:=nIndex, nSubIndex :=nSubIndex,
pDstBuf:= ADR(fLimitRdcLowCh1), cbBufLen:=SIZEOF(fLimitRdcLowCh1), bExecute:=TRUE);
bError:=fbSdoRead.bError;
nErrId:=fbSdoRead.nErrId;

Note 1: You will find the NetId if you click your EtherCAT master device in the project tree and select the tab
EtherCAT:

20 of 23

Note 2: You will find the EtheCAT slave address if you click the 2511 device in the project tree and select
the tab EtherCAT:

 Build the project via Build → Build Solution, click on the Login symbol and set a break point
(F9) in the first code line:

 Start the program execution with the F5 key or via PLC → Start and go step for step (F10) through
the whole program until you reach the last line. Check if the witten und read values are identical:

 21 of 23

5.2 Read and Write of ‘string’ data types

Example 3: Write and read the station name of the 2511:

 Create a new POU as described above and name it WriteReadStationName:

 Write or copy the following source code into the new POU:

PROGRAM ReadSerial
VAR
 fbSdoWrite : FB_EcCoESdoWrite;
 fbSdoRead : FB_EcCoESdoRead;
 sNetId : T_AmsNetId := '169.254.20.111.3.1'; // see note 1 in the previous section
 nSlaveAddr : UINT := 1001; // see note 2 in the previous section
 nIndex : WORD := 16#246A; // CoE Object – Station Name
 nSubIndex : BYTE := 0; // is always 0
 abStationName : STRING := ‘New Name’; // station name to write
 bExecute : BOOL := TRUE;
 bError : BOOL;
 nErrId : UDINT;
END_VAR

fbSdoWrite(//write new station name
 sNetId := sNetId,
 nSlaveAddr := nSlaveAddr,
 nIndex := nIndex,
 nSubIndex := nSubIndex,
 pSrcBuf := ADR(abStationName),
 cbBufLen := 20,
 bExecute := bExecute);

IF NOT fbSdoWrite.bBusy THEN
 bExecute := FALSE;
 IF NOT bError THEN
 bError := FALSE;
 nErrId := 0;
 ELSE
 bError := fbSdoWrite.bError;
 nErrId := fbSdoWrite.nErrId;
 END_IF
 fbSdoWrite(bExecute := FALSE);
END_IF

abStationName := 'CleartoReadAgain'; //clear variable to read again

22 of 23

fbSdoRead(//read current station name
 sNetId := sNetId,
 nSlaveAddr := nSlaveAddr,
 nIndex := nIndex,
 nSubIndex := nSubindex,
 pDstBuf := ADR(abStationName),
 cbBufLen := 20,
 bExecute := bExecute);

bError := fbSdoRead.bError;
nErrId := fbSdoRead.nErrId;

 Insert a call for the POU in the MAIN block:

 Build the Project via Build → Build Solution:

 Log in PLC → Login, set a break point to the first line and click PLC → Start (F5) to run the
program. Press F10 to execute the program step by step

 First the new station name “New Name” will be written in the device (line 1 – 8)

 The variable “abStationName” will be overwritten in line 22

 23 of 23

 Now the station name will be read again. Make sure the station name on line 29 is the same as in
line 6 to confirm that the task was succesfull

	Introduction
	1. Creating new project
	2. Installation of ESI description files
	3. Scan EtherCAT devices
	4. Create a sample program
	5. Further Examples
	5.1 Read and Write of ‘real’ data types
	5.2 Read and Write of ‘string’ data types

