

High-Precision Torque Sensor

rotating, contactless

MODEL 8661

With mounting block

In the cross-section

With mounting block and couplings

With couplings

Highlights

- Measurement ranges of 0 ... 0.02 N·m to 0 ... 1000 N·m
- Very low linearity error ≤ ±0.05 % F.S.
- Output signal 0 ... ±10 V
- Refresh rate 2000 measurements/s

Options

- Speed and angle measurement up to 2000 increments
- Dual range in different graduations
- Shaft end with keyway
- USB port including software

Applications

- Research & development
- Machinery and plant engineering
- Electric motor test
- Suitable for use in all types of test bench

Product description

The non-contact torque sensor type 8661 works according to the strain gage principle. Thanks to the inductive and optical transmission of the signals, the sensor is maintenance-free, the signals are digitized directly on the shaft and made available by the evaluation electronics as a voltage signal or via USB. Thanks to the high-quality bearing, depending on the measuring range, up to 25,000 rpm is possible. The bidirectional voltage output from -10 V ... +10 V allows the direction of rotation to be identified very easily.

To record the speed and angle of rotation, the sensor can optionally be equipped with different number of increments, up to 2000. This speed / angle signal is available as a TTL output signal.

The free DigiVision Light software is available in connection with USB, alternatively drivers for LabVIEW and DASYLab are ready for download.

Connection cables in various lengths, metal bellows couplings and mounting blocks are available for integration in customer-specific systems.

8661	-	4020	4050	4100	4200	4500	5001	5002
Measuring range calibrated in N·m from 0		±0.02 N⋅m	±0.05 N⋅m	±0.1 N·m	±0.2 N⋅m	±0.5 N⋅m	±1 N·m	±2 N·m
Accuracy								
Relative non-linearity		0.1 %	6 F.S.			0.05 % F.S.		
Relative non-linearity dual range sensor				-			0.1 % F.S.	
Relative hysteresis				< 0.1 % F.S. /	dual range sens	sor < 0.2 % F.S.		
Tolerance of sensitivity				±0.1 % F.S. /	dual range sens	or ±0.2 % F.S.		
Electrical values								
Rated supply voltage range	е			10 3	0 V DC (or 5 V	via USB)		
DC power consumption					approx. 2 W			
Output voltage at ± rated torque					±10 V			
Output resistance					1 kΩ			
Insulation resistance					> 5 MΩ			
Refresh rate					2000/sek.			
Ripple					$< 50 \text{ mV}_{ss}$			
Control signal					10.00 V DC			
Environmental cond	itions							
Range of operating and nominal temperature					0 °C +60 °C			
Sensitivity of temperature effects						nge dual range nge dual range s		
Mechanical values								
Dynamic overload safe				recommend	led 70 % of non	ninal torque		
Max. operation torque			20	0 % of nominal	torque / dual ro	ange sensor 150) %	
Breakaway torque				300	% of nominal to	orque		
Alternating load				70	% of nominal to	rque		
Maximum limit axial load	[N]				50			
Maximum limit radial load	[N]		;	3		4	7	13
Spring constant	[N·m/rad]	1	0	20	50	100	100	180
Mass moment of inertia measuring side	[10 ⁻⁶ kg*m ²]		0.048		0.05	0.06	0.062	0.077
Mass moment of inertia drive side	[10 ⁻⁶ kg*m ²]				2.2			
Max. rotary speed	[min ⁻¹]				25000			
Other								
Material		Housing: mad aluminium; strength alumi shaft ends st 1.4	Shaft: high- nium 3.1354; tainless steel			ade of anodized stainless steel 1		
Protection class				ac	c. EN 60529, IF	P40		
Weight	[g]				300			
Installation								
Installation instructions		Please refer	to our operatin	g instructions fo	r detailed inform	rces during fitting nation www.burs For angular offse	ster.com. Suitab	le couplings

Technical Data

8661	-	5005	5010	5020	5050	5100	5200	5500	6001
Measuring range calibrated in N·m from 0		±5 N⋅m	±10 N·m	±20 N·m	±50 N·m	±100 N·m	±200 N⋅m	±500 N·m	±1000 N·m
Accuracy									
Relative non-linearity					0.05	% F.S.			
Relative non-linearity dual range sensor					0,1 9	% F.S.			
Relative hysteresis				< 0.1 %	F.S. / dual rai	nge sensor < (D.2 % F.S.		
Tolerance of sensitivity				±0.1 %	F.S. / dual rai	nge sensor ±0	.2 % F.S.		
Electrical values									
Rated supply voltage range	•			10) 30 V DC	(or 5 V via US	SB)		
DC power consumption					appro	x. 2 W			
Output voltage at ± rated torque					±1	0 V			
Output resistance					1	kΩ			
Insulation resistance					> 5	ΜΩ			
Refresh rate					2000)/sek.			
Ripple					< 50) mV _{ss}			
Control signal					10.00) V DC			
Environmental condi	tions								
Range of operating and nominal temperature					0 °C	+60 °C			
Sensitivity of temperature effects			the zero point the sensitivity						
Mechanical values									
Dynamic overload safe				recor	nmended 70 °	% of nominal t	orque		
Max. operation torque				200 % of no	minal torque ,	/ dual range s	sensor 150 %		
Breakaway torque					300 % of no	ominal torque			
Alternating load					70 % of no	minal torque			
Maximum limit axial load	[N]		200			300		5	00
Maximum limit radial load	[N]	15	30	60	125	2	15	250	500
Spring constant	$[N{\cdot}m/rad]$	800	1700	3000	14000	25000	40000	150000	220000
Mass moment of inertia measuring side	[10 ⁶ kg*m ²]	2.2	2.35	2.6	33.3	33.7	35.0	600	600
Mass moment of inertia drive side	[10 ⁻⁶ kg*m ²]	14	4.3	14.6	85.7	85.9	85.5	12	200
Max. rotary speed	[min ⁻¹]			150	000			70	000
Other									
Material			Housir	ng: made of a	nodized alumi	inium; Shaft: s	tainless steel 1	1.4542	
Protection class					acc. EN 60	0529, IP40			
Weight	[g]		900			1500		60	000
Installation	เลา					.500			- •
Installation instructions			fer to our opei	ating instructi	ons for detaile			com. Suitable	

For detailed dimensions you can find sensor CAD data on our website www.burster.com.

8661	-	4020	4050	4100	4200	4500	5001	5002
Measuring range from 0		±0.02 N⋅m	±0.05 N⋅m	±0.1 N·m	±0.2 N⋅m	±0.5 N⋅m	±1 N·m	±2 N⋅m
Geometry								
A1	[mm]				45			
A2	[mm]				31			
A3	[mm]				30			
A4	[mm]				26			
A5	[mm]				24			
B1	[mm]				40			
D1	[mm]			5,	g6			6g6
D2	[mm]				8g6			
D4 Ø / deep	[mm]				Ø 3.1 / 5			
Н	[mm]				60			
H1	[mm]				15			
L	[mm]			8	37			94
L2	[mm]			1	0			14
L3	[mm]				66			
L4	[mm]			1	1			14
T1 / deep	[mm]				M4 / 8			
T2 / deep	[mm]				M3 / 5,5			

8661	-	5005	5010	5020	5050	5100	5200	5500	6001
Measuring range from 0		±5 N⋅m	±10 N⋅m	±20 N⋅m	±50 N⋅m	±100 N·m	±200 N⋅m	±500 N⋅m	±1000 N·m
Geometry									
A1	[mm]			5	7			5	50
A2	[mm]			4	4			9	90
A3	[mm]			4	.1			3	80
A4	[mm]		45.3			54.4		88	3.4
A5	[mm]		45.3			54.4		88	3.4
B1	[mm]		55			64		10	07
D1	[mm]		15g6			26g6		45	īg6
D2	[mm]		15g6			26g6		45	īg6
D4 Ø / deep	[mm]			Ø 3.	1/5			Ø 4.	I / 10
Н	[mm]		85			94		1:	37
H1	[mm]		27.5			32		53	3.5
L	[mm]		143			168		2	85
L2	[mm]		30			45		9	95
L3	[mm]		83			78		9	95
L4	[mm]		30			45		9	95
T1 / deep	[mm]		M5 / 9			M5/8		M8	/ 20
T2 / deep	[mm]			M4	/6			M6	/ 10

12-pin connector or USB (Option, USB connection cable included)

Wiring Code depends on the options selected	I	
Pin	Assignment	Cable colour (99540-000F-052XXXX)
A	NC	
В	Angular exit B	violet
С	Moment output +	yellow
D	Moment output -	green
E	Supply -	blue
F	Supply +	red
G	Angular exit A	pink
Н	NC	
J	Ground angle output, measuring range switchover	black
K	Control signal	White
L	Measuring range switchover	brown
M	NC	

Accessories

Mounting block model 8661-Z00X

If the sensor needs to be replaced, the locating pin speeds up replacement, avoiding the need for laborious realignment. This can be useful especially when the sensor is only used occasionally in the load path. The mounting block has a central hole and special design allowing a range of options for reliable cable attachment. Two clips ensure the sensor is fixed securely. For further information please see accessories data sheet 8661-ZOOX

Metal bellow couplings

For optimum compensation of misalignment we recommend torsionally free metal bellow couplings. They are characterized by their excellent torsional stiffness during torque load and their low restoring forces. The couplings are optionally with keyways available.

For further information please see accessories data sheet 869X.

Options

USB interface

This sensor version has a USB connection instead of the $\pm 10~V$ output. The sensor is powered via USB, no further connections required.

In addition to torque, the speed or rotation angle measured values are optionally available. The calculated mechanical performance in is also displayed in DigiVision.

Free drivers are available for integration into LabVIEW and DASYLab, also a DLL for integration into your own programs.

Dual range

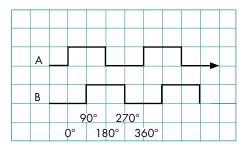
The sensor with two measuring ranges corresponds to its dimensions of the standard version, but has two separately calibrated measuring ranges. The measuring ranges are switched within <50 ms, even during measurement operation, by applying the operating voltage to pin L or via USB. The following graduations are available:

Gradua	ition:	1:	10	1	: 4	1	:5
			Upper so	cale va	lue of sec	cond ra	nge
0.5	$N \cdot m$		-		-	0.1	$N \cdot m$
1	N⋅m		-		-	0.2	N⋅m
2	N⋅m	0.2	N⋅m	0.5	N⋅m		-
5	N⋅m	0.5	N⋅m		-	1	N⋅m
10	N⋅m	1	N⋅m		-	2	N⋅m
20	N⋅m	2	N⋅m	5	N⋅m		-

Graduation:	1:10	1:4	1:5
	Upper so	cale value of sec	ond range
50 N⋅m	5	-	10 N⋅m
100 N·m	10 N⋅m	-	20 N⋅m
200 N⋅m	200 N⋅m	50 N⋅m	-
500 N⋅m	50 N⋅m	-	100 N⋅m
1000 N·m	10 N⋅m	-	100 N⋅m

The second, smaller measuring range can be activated via USB or by applying the operating voltage to pin L.

Torque sensor with integrated rotational speed / angular displacement measurement

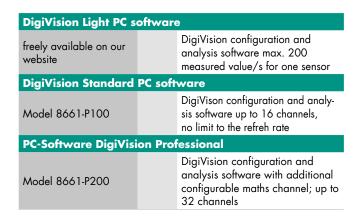

8661 torque sensors are optionally available with integrated rotational speed and angular displacement measurement. Two pulse channels with TTL level – channel A and channel B – are always available. For clockwise rotation (looking at the test side), channel A leads channel B with a phase shift of 90°. Only one pulse channel is needed for speed measurement.

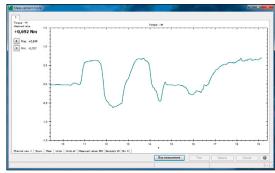
For angular displacement measurement (or direction detection), both channels need to be evaluated. To achieve the maximum angular resolution, four-edge decoding must be used to read both the rising and falling edges. For instance an angular resolution of up to 0.045° can then be achieved with an encoder disk having 2000 increments.

Maximum speed:

Encoder disk with 2000 increments: $\leq 3000 \text{ min}^{-1}$ Encoder disk with Encoder disk with Encoder disk with Encoder disk with 240 increments: $\leq 15000 \text{ min}^{-1}$ Encoder disk with 240 increments: $\leq 25000 \text{ min}^{-1}$

Increments	from 0 0,02 N·m to 0 2 N·m	from 0 5 N·m to 0 200 N·m	from 0 500 N·m to 0 1000 N·m
2000	-	yes	-
1024	yes	yes	yes
400	yes	yes	-
240	yes	-	-


The measuring accuracy of the rotational speed and angular displacement measurement is directly related to the speed and the encoder disk used. With the USB option, another influencing factor is the setting of the averaging, which should be adapted to the speed range used.



DigiVision configuration and analysis software

Features

- Tare function
- Configuration options for averaging and filters; value stored in sensor
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8625) available with standard version

Accessories

Order code	
9940	Mating connection 12 pin (scope of delivery)
9900-V539	Mating connection 90°-angle
99540-000F-0520030	Connecting cable, length 3 m, other end free
99539-000F-0520030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99209-540G-0160030	Connecting cable for model 7281 and model 9311, length 3 m, with external supply
99163-540A-0520030	Connecting cable, length 3 m, 8661 to DIGIFORCE® 9307combined cannel D (option channel)
99209-215A-0090004	Adapter cable to DIGIFORCE® 9307 standard channel A/B and C (usable only in connection with type 99163-540A-052xxxx)
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)
8661-Z010	USB cable connector type A, type BMini, length 2 m, black
8661-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8661-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
8600-Z00X	Mounting block, see accessories data sheet 8661-Z00X
8600-Z010	Power pack for external supply

Calibration

Manufacturer Calibration	on Certificate (WKS)
	Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.
Calibration Certificate v	vith accreditation symbol
	Calibration certificate with accreditation symbol per DIN 51309, clockwise or/and anticlockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.

Order code

	measu	ring Ra	inge			Co	de							
	0	±0.0	2 N⋅m	n .	4	0	2	0						
	0	±0.0	5 N·n	า	4	0	5	0						
	0	±0.1	N⋅n	ı	4	1	0	0						
	0	±0.2	N∙n	า	4	2	0	0						
	0	±0.5	N∙n	า	4	5	0	0						
	0	±1	N∙m	ı	5	0	0	1						
	0	±2	N⋅m	1	5	0	0	2						
	0	±5	N⋅m	1	5	0	0	5						
	0	±10	N⋅m	1	5	0	1	0						
	0	±20	N⋅m	1	5	0	2	0						
	0	±50	N⋅m	1	5	0	5	0						
			N⋅m	1	5	1	0	0						
					5	2	0	0						
			N⋅n	1	5	5	0	0						
	0 ±	1000	N⋅n	1	6	0	0	1				1		
											0	0	0	
8	6	6	1	-					-	V				
0 ±0.5 N·m 4 5 0 0 0 ±1 N·m 5 0 0 1 0 ±2 N·m 5 0 0 2 0 ±5 N·m 5 0 1 0 0 ±20 N·m 5 0 2 0 0 ±50 N·m 5 0 5 0 0 ±200 N·m 5 2 0 0 0 ±500 N·m 5 5 0 0 0 ±1000 N·m 6 0 0 1 Standard 0 ±1000 N·m 6 0 0 0 0 0														
Star Dua Dua	ndard sen Il-range v Il-range v	nsor, one ersion, g ersion, g	gradu gradu	ation 1:	10 avail 5 availa	ble ≥ 0	.5 N·m				0 1 2			
Star Dua Dua Dua	ndard sen Il-range vo Il-range vo Il-range vo	ersion, g ersion, g ersion, g	gradu gradu gradu	ation 1: ation 1: ation 1:	10 avail 5 availa 4 availa	ble ≥ 0	.5 N·m				0 1 2	0		
Star Dua Dua Dua With	ndard sen Il-range v Il-range v	ersion, gersion, gersion, gersion, gersion, gersion, gersion	gradu gradu gradu gradu	ation 1:2 ation 1:2 ation 1:2	10 avail 5 availa 4 availa nt	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	0		
Star Dua Dua Dua With	ndard sen nl-range vo nl-range vo nl-range vo hout spee	ersion, gersion, gers	gradu gradu gradu gradu e mea	ation 1:2 ation 1:2 ation 1:2 surement 400 in	10 availa 5 availa 4 availa nt acrement	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2			
Star Dua Dua Dua With Spe	ndard sen il-range vi il-range vi il-range vi hout spee ed/angle	ersion, gersion, gers	graduo graduo e mea: emen emen	ation 1: ation 1: ation 1: surement 400 in	10 availa 5 availa 4 availa nt acrement	ble ≥ 0 ble ≥ 2 s nts	.5 N·m				0 1 2			
Star Dua Dua With Spe Spe Spe	ndard sen al-range val-range val-range val- hout spee ed/angle	ersion, gersion, gersion, gersion, ged/angleed/angleed measures measures measures measures	graduo graduo graduo e mea emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2			
Star Dua Dua With Spe Spe Spe	ndard sen ul-range vo ul-range vo hout spee ed/angle ed/angle ed/angle	ersion, gersion, gersion, gersion, ged/angleed/angleed measures measures measures measures	graduo graduo graduo e mea emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3		
Star Dua Dua With Spe Spe Spe Spe	ndard sen ul-range vo ul-range vo hout spee ed/angle ed/angle ed/angle	ersion, gersion, gersion, ged/angleed/	graduo graduo graduo e mea emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3		
Star Dua Dua With Spe Spe Spe Spe	ndard sen al-range val-range val-range val- hout spee ed/angle ed/angle ed/angle	ersion, gersion, gersion, ged/angleemeasuremasurem	graduo graduo e mea emen emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3	0	
Starr Dua Dua With Spe Spe Spe Spe Out	ndard sen ul-range val-range val-range val- hout spee ed/angle ed/angle ed/angle ed/angle	ersion, gersion, gersion, gersion, ged/angle measure m	graduo graduo e mea emen emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3	0	
Starr Dua Dua With Spe Spe Spe Out USB	ndard sen al-range val-range val-range val- hout speed ed/angle ed/angle ed/angle ed/angle ed/angle	ersion, gersion, gers	graduo graduo graduo e mea emen emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3		
Starr Dua Dua Dua With Spe Spe Spe Out USB Out	ndard sen al-range val-range val-range val- hout spee ed/angle ed/angle ed/angle ed/angle ut signal put voltage interface put voltage	ersion, gersion, gers	graduo graduo graduo e mea emen emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3	1	
Starr Dua Dua Dua With Spe Spe Spe Spe USB Output USB Output Cersic	ndard sen al-range val-range val-range val-range val-range val-range val-rangle ed/angle ed/angle ed/angle ed/angle ed/angle ed/angle ed/angle ed/angle ed/angle ed/angle ed/angle ed/angle	ersion, gersion, gers	graduo graduo graduo e mea emen emen emen	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3	1	
Starr Dua Dua Dua With Spe Spe Spe Outpu USB Out Rout Rout Rout Dua	ndard sen al-range val-range val-range val- hout spee ed/angle ed/angle ed/angle ed/angle ut signal put voltage interface put voltage	ersion, gersion, gers	graduce mea emen emen emen ::10 V	ation 1: ation 1: ation 1: surement 4 400 in t 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2	1 2 3	1	

